Hi, I’m using OSQP for whole body control of legged robots.
We defined the objective with pretty high value scale, and the objective value increases as the number of iteration increases. Someone can give some tips for tuning the parameters?
-----------------------------------------------------------------
OSQP v0.6.0 - Operator Splitting QP Solver
(c) Bartolomeo Stellato, Goran Banjac
University of Oxford - Stanford University 2019
-----------------------------------------------------------------
problem: variables n = 42, constraints m = 76
nnz(P) + nnz(A) = 368
settings: linear system solver = qdldl,
eps_abs = 1.0e-03, eps_rel = 1.0e-03,
eps_prim_inf = 1.0e-04, eps_dual_inf = 1.0e-04,
rho = 1.00e-01 (adaptive),
sigma = 1.00e-06, alpha = 1.60, max_iter = 2000
check_termination: on (interval 25),
scaling: on, scaled_termination: off
warm start: on, polish: off, time_limit: off
iter objective pri res dua res rho time
1 0.0000e+00 2.47e+02 6.18e+05 1.00e-01 2.58e-04s
50 1.8453e+05 2.06e-01 5.03e+00 1.00e-01 6.10e-04s
status: solved
number of iterations: 50
optimal objective: 184526.4206
run time: 6.17e-04s
optimal rho estimate: 1.63e-01
-----------------------------------------------------------------
OSQP v0.6.0 - Operator Splitting QP Solver
(c) Bartolomeo Stellato, Goran Banjac
University of Oxford - Stanford University 2019
-----------------------------------------------------------------
problem: variables n = 42, constraints m = 76
nnz(P) + nnz(A) = 416
settings: linear system solver = qdldl,
eps_abs = 1.0e-03, eps_rel = 1.0e-03,
eps_prim_inf = 1.0e-04, eps_dual_inf = 1.0e-04,
rho = 1.00e-01 (adaptive),
sigma = 1.00e-06, alpha = 1.60, max_iter = 2000
check_termination: on (interval 25),
scaling: on, scaled_termination: off
warm start: on, polish: off, time_limit: off
iter objective pri res dua res rho time
1 -1.6241e+04 8.04e+00 2.90e+07 1.00e-01 2.41e-04s
200 -2.3358e+04 2.04e-02 9.24e+01 1.00e-01 1.70e-03s
225 -3.0731e+04 1.94e-03 5.23e+01 1.00e-01 1.88e-03s
status: solved
number of iterations: 225
optimal objective: -30731.0789
run time: 1.89e-03s
optimal rho estimate: 3.22e-02